
Improving the Space-Time
Efficiency of Matrix

Multiplication Algorithms
Yuan Tang

yuantang@fudan.edu.cn

School of Computer Science, Fudan University

Motivation
• Matrix Multiplication and fast algorithms (e.g. Strassen) is a fundamental

computation and building block in algorithm design.
• Classic Processor-Aware (PA) approaches may not utilize all processor

effectively unless the processor number matches well the structure of
algorithm. E.g.
• The Communication-Avoiding Parallel Strassen (CAPS) by Ballard et al. [5]

requires p to be an exact power of 7. Lipshitz et al. [32] improved it to a multiple
of 7 with no large prime factors, i.e. p = m * 7^x, where 1<=m<7 and 1 <= x are
integers by a hybrid of Strassen and classic MM.

• Communication–Avoiding parallel Recursive rectangular Matrix Multiplication
(CARMA) by Demmel et al. [20] assumes p is an exact power of 2, or any of p’s
prime factor can be bounded by a small constant.

• Classic Processor-Oblivious (PO) and Cache-Oblivious MM algorithms
achieve optimality either in time or space, but not both. E.g.
• CO2: O(n) depth, O(n^3/(B\sqrt{M|) + p n M/B) w.h.p.
• CO3: O(\log n) depth, O(n^3/B + p \log n M/B) w.h.p.

Our Contributions

Cost Models and Programming Model
• Parallel Performance Model:

• Work-span model, aka work-time model
• Views a parallel computation as a DAG. Each vertex stands for a computation

and each edge some control or data dependency. Each arithmetic op is counted
uniformly as an O(1) op.

• Only calculates total work (T_1) and critical-path length (T_\infty)
• Parallel running time : T_p = O(T_1 / p + T_\infty) w.h.p. [3]

• Memory Model
• Sequential cache complexity (Q_1) in the ideal cache model [22]
• Parallel cache complexity : Q_p = Q_1 + O(p T_\infty M / B) w.h.p. under RWS

scheduler [1, 37]

• Programming Model:
• Nested Parallel Model, aka Fork-Join Model
• Parallel: a || b
• Serial: a ; b

Time Adaptive and Reductive (TAR) Algorithm
• Problems of CO2:

• It imposes more control dependency than
necessary data dependency to keep the
algorithm correct. E.g. all-to-all sync
between the 2 parallel steps (8 sub-MMs)
of CO2.

• The all-to-all sync separating the 2 parallel
steps actually serializes all n muls targeting
the same cell. However, muls by itself are
independent of each other and should be
parallelized, serialization only makes sense
for the later adds.

• Our improvements:
• TAR to remove unnecessary control

dependency from a critical path, parallelizes
all muls and serializes only adds.

Time Adaptive and Reductive (TAR) Algorithm
• Memory Allocator:

• Space for base-case computation gets
reused on each processor

• A task on base-case computation
cannot block or be preempted.

• Theorem 1:
• The TAR-MM algorithm computes

classic square MM of dimension n on a
semiring in O(n)time, with O(n^2+p
b^2) space, and optimal O(n^3/(B√M)
+ n^2/B) cache misses, where b
denotes the dimension of base case. If
assuming b is some small constant, the
space bound reduces to O(n^2+p).

Space Adaptive and Reductive (SAR) Algorithm
• Problems of CO3:

• It allocates space irrespective of the availability
of processors, i.e. it is designed for an infinite
number of processors, or proportional to T_1
/ T_\infty.

• Our improvements:
• Generalization of ``busy-leaves”property:

each depth of each processor can have only
one copy of memory and will be reused
across function calls.

• Lazy Allocation: allocate space iff it runs
simultaneously on a different processor from
the sub-MM updating the same output
region.

Space Adaptive and Reductive (SAR) Algorithm
• Theorem 3. The SAR-MM

algorithm computes general MM
of dimension n on a semi-ring in
optimal O(logn) time,
O(p^{1/3}n^2) space, and optimal
O(n^3/B√M + n^2/B) cache
complexities, assuming p=o(n).

Space-Time Adaptive and Reductive (STAR) Algorithm

• The TAR algorithm remove muls from a
critical path without using much more
space, while the SAR algorithm reduces
the space complexity without increasing
the time complexity

• STAR = TAR + SAR
• Theorem 4. The STAR-MM algorithm

computes the general MM of dimension
n on a semi-ring in O(√plogn) time,
optimal O(n^2) space, and optimal
O(n^3/(B√M)+n^2/B) cache bounds,
assuming p=o(n^2/log^2 n)

• Theorem 7.The STAR-MM-Strassen
algorithm has an O(p^{1/2} logn)
time, O(p^{0.09} n^ω0)work,
optimal O(n^2) space, and
O(p^{0.09}·n^ω0/(BM^{(1/2)ω0−1})
+ p^{1/2}·n^2/B) sequential cache
complexities, where ω0=log_2 7

• Theorem 8. The STAR-Strassen
algorithm has an optimal O(n^ω0)
work, optimal O(log n) time, near-
optimal O(n^ω0/(BM^{(1/2)ω0−1})
+ p^{(1/2)ω0−1} n^2 / B) cache and
an O(p^{(1/2)ω0} n^2) space
complexities, where ω0=log_2 7.

Experiments

